
REPORT DOCUMENTATION PAGE Form Approved
0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 tiour per response, including tiie time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Papen«ori(Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE rDD-MM-yyyV9

31 - 07 - 2004
2. REPORT DATE

Annual Technical Proaress
3. DATES COVERED (From - To)

01 July 2003-30 June 2004
4. TITLE AND SUBTITLE

Language-based Security for Malicious Mobile Code
5a. CONTRACT NUMBER

5b. GRANT NUMBER

N00014-01-1-0968
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Fred B. Schneider,
Dexter Kozen,
Greg Morrisett and
Andrew Myers

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Cornell University
Ithaca, NY 14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

39545

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Ballston Centre Tower ONE
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited

13. SUPPLEMENTARY NOTES 20041008 468
14. ABSTRACT

Report sumnnarizes progress over the past year in developing language-based technologies for
defending software systems against attacks from mobile code and system extensions.

15. SUBJECT TERMS

In-lined reference monitors, proof carrying code, end-to-end security, information flow enforcement

16. SECURITY CLASSIFICATION OF:
a. REPORT

u
b. ABSTRACT

u
c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

11

19a. NAME OF RESPONSIBLE PERSON

Fred B. Schneider
19b. TELEPONE NUMBER {Include area code)

607-255-9221
standard Form 298 (Rev. 8-98)
Prescribed by ANSI-Std Z39-18

Language-based Security for Malicious Mobile Code

N00014-01-1-0968

Annual Report
01 July 2003 - 30 June 2004

Fred B. Schneider (Principal Investigator)
Dexter Kozen, Greg Morrisett, and Andrew Myers (Co-Investigators)

Department of Computer Science
Cornell University

Ithaca, New York 14853

Overview

Mobile code provides a convenient, efficient, and economical way to extend
the functionality and improve the performance of networked computing sys-
tems. It is an approach that has been widely embraced, as evidenced by
today's operating systems, web browsers, and applications with their sup-
port for "plug-and-play", Javascript, downloaded helper applications, and
executable attachments. Yet today's security architectures provide poor
protection from faulty, much less from malicious, extensions. Our informa-
tion systems are thus increasingly susceptible to attacks—attacks that can
have devastating consequences.

This project is investigating programming language technology—program
analysis and program rewriting—for defending software systems against at-
tacks from mobile code and system extensions. The approach promises to
support a wide range of flexible, fine-grained access-control and information-
flow policies. Only a small trusted computing base seems to be required.
And the run-time costs of enforcement should be low.

Our progress over the past year is summarized below. Details can be
found in the publications whose citations are given following all the sum-
maries. A list of DoD interactions and technology transitions appears at the
end of the report.

In-lined Reference Monitors

The abstract model for security policies developed by Sclmeider character-
ized a class EM of policies meant to capture what could be effectively en-
forced through execution monitoring. Execution monitors are enforcement
mechanisms that work by monitoring the computational steps of untrusted
programs and intervening whenever execution is about to violate the secu-
rity policy being enforced. Execution monitoring, however, can be viewed
as an instance of the more general technique of program-rewriting, wherein
the enforcement mechanism transforms untrusted programs before they are
executed so as to render them incapable of violating the security policy to
be enforced. Since numerous systems use program-rewriting in ways that go
beyond what can be modeled as an execution monitor, a characterization of
the class of policies enforceable by program-rewriters is useftil.

Working with Ph.D. student Kevin Hamlen, Pi's Morrisett and Schnei-
der have developed just such a characterization. This new class of policies is
called the RW-enforceable policies. And to date, we have connected a tax-
onomy of policies to the arithmetic hierarchy of computational complexity
theory by observing that the statically enforceable policies are the recur-
sively decidable properties and that the EM class of pohcies is the co-RE
properties. We have also showed that the RW-enforceable policies axe not
equivalent to any class of the arithmetic hierarchy.

Execution monitors implemented as in-lined reference monitors can en-
force policies that lie in the intersection of the co-RE policies with the RW-
enforceable policies. The policies within this intersection are enforceable
benevolently—^that is, "bad" events are blocked before they occur. But
co-RE policies that lie outside this intersection might not be benevolently
enforceable. In addition, we have been able to show that program rewriting
is an extremely powerfial technique in its own right, which can be used to
enforce policies beyond those enforceable by execution monitors.

Progress on Prototype IRM. Work continued on a prototype Inlined
Reference Monitor (IRM) rewriter for the Microsoft's .NET and CLI in-
termediate language. Specifically, over the past year we developed a lype
system of security polici^ for BIL (Baby Intermediate Language), a realis-
tic subset of CLI. A rich class of security policies could now be specified as
types; the type checker ensures that a program satisfies the policy, augment-
ing a non-compliant program with corrective actions if necessary. Thus, the
result is a compile-time way to enforce what an in-lined reference monitor
can handle plus some additional policies (that are in the class of policira

that require program rewriting).

Cyclone Compiler

We continued development of the Cyclone language, which is a type-safe
variant of C. The goal of this work is to make it easy to port existing C code
and to write new systems code to a type-safe environment. The environment
guarantees the absence of attacks such as buffer overruns and format string
attacks which make up the bulk of known vulnerabilities in existing systems,
servers, and applications.

Work for this past year has focused on (a) improving the quality of
the code generated by the compiler, (b) increasing the expressiveness of
the language, and (c) increasing the assurance in the Cyclone compiler. In
addition, we conducted a number of experiments to evaluate the effectiveness
of the language and compiler.

With respect to code quahty, we have primarily focused on static anal-
yses for array-bounds check elimination which we earlier identified as the
primary performance bottleneck. When a pointer to an array is derefer-
enced, we must ensure that the pointer lies within the bounds of the array.
Where possible, we would like to perform this validation at compile time
to avoid any run-time overhead or run-time failure. However, we discovered
that many proposed approaches in the literature were in fact unsound due to
integer overflow. We have now developed analyses that are provably sound.
One analyses is based on an extension of a simple difference-constraint al-
gorithm and another is based on linear programming.

We also integrated new features into the language to support better static
checking. In particular, we added support for a limited form of dependent
types which allows programmers to express relations between values (e.g.,
integer variable n holds the length of the array A). Dependent types let
programmers capture the invariants needed to prove that certain run-time
checks axe unnecessary. This makes it possible to eliminate run-time type
information that would otherwise be needed to support the checks. In turn,
this makes interoperability with hardware and legacy code easier and less
error prone.

The addition of more sophisticated types and better analyses supports
better static verification of code and improved performance. However, these
additions have added considerably to the size and complexity of the com-
piler. To mitigate the concern that bugs in the compiler could lead to a
vulnerability, we have taken a number of steps ranging from good engineer-

* I

ing practice to formal methods. For instance, we refactored the compiler to
simplify its structure and introduced a suite of regr^sion tests that exercises
the critical paths in the compiler. In addition, we developed an improved
model of the core type system for Cyclone and have formally proved its
soundness. We are currently working to move the flow analyses and type
inference out of the trusted computing base by forcing them to construct ex-
pHcit proofs that can be checked by a simpler (and hence more trustworthy)
checker.

Finally, we worked to evaluate the effectiveness of Cyclone in a number
of settings. For instance, we ported a number of micro-benchmarks from
C to Cyclone and compared the resulting performance against both C and
Java. We found that on average, the Cyclone code was about 30% slower
than the C code, but more than 5 times faster than the Java code. We also
ported relatively large, security-critical applications, such as web servers,
FTP servers, and encryption libraries to Cyclone. This has allowed us to
evaluate the performance of the Cyclone code relative to the (unsafe) C
code, to determine what vulnerabilities are caught by the Cyclone type-
checker or run-time system, and to understand how difficult it is to port
legacy appHcations. We found that in these large applications (which are
largely I/O bound) there was almost no performance overhead and that all
known (and some unknown) vulnerabiliti^ were caught by the compiler or
run-time. However, we also found that porting the code from C to Cyclone
was more difficult than we expected and that farther work is needed in this
area.

Language-based enforcement of end-to-end security

We continued our work on analyzing and transforming programs to enforce
end-to-end security properties. By identifying program dependencies (or in-
formation flows), it becomes possible to either detect insecure dependencies
or automatically transform the computing system to make it secure. This
has two benefits relevant to the goals of the larger project. First, we can an-
alyze untrusted code to see whether it violates security properties. Second,
we can analyze the larger software system into which this untrusted compo-
nent is introduced, to understand what security guarantees are enforced even
if that code misbehaves. Thus, we can recognize malicious mobile code and
can also design systems that are inherently tolerant of it. Much of this work
has been done in the context of Jif, an extension to the Java programming
language that supports information flow analysis.

Information release and robust declassification Strong policies for
information confidentiality can be enforced through static program analysis,
including type systems and dataflow analysis. These analyses are able to
show that no information is released from one domain to another. However,
realistic programs do need to leak some information; even a program as sim-
ple as a password checker leaks some confidential information, because an
attacker who tries a password learns something about the real password even
when he guesses wrong. To support these programs, the Jif programming
language developed by our group adds a declassification construct that al-
lows explicit information release. The question then becomes what security
guarantees can be offered in the presence of this powerful escape hatch.

Recently we defined a new end-to-end security property we call robust-
ness. It captures the following idea: although a system may release sensitive
information (intentionally), it should not be possible for an attacker to affect
what information is released or whether information is released at all. In
our CSFW 2004 paper, we formally characterize this property in the setting
of simple programming language and give a compile-time program analysis
that provably enforces the property. This program analysis turns out to be
very similar to an analysis that we had already employed in our Jif/split
compiler, so it also helps justify the security of our work on automatically
partitioning programs for distributed systems.

Dynamic policies We have been investigating information security in
systems where policies change or are computed dynamically. This capability
is important for realistic computing systems. For example, when a program
opens a file on the file system, it does not usually know in advance how
sensitive the information in the file is; this must be discovered dynamically.
Dynamic policies are also important for transmitting information through
multilevel channels. However, dynamic change introduces the possibility
that covert channels will be created either through inadvertent downgrading
or by communicating through the choice of policy itself.

The Jif programming language has some support for dynamic policies
but we have found that it is not expressive enough to build some systems of
interest. Therefore, we developed a richer dynamic policy framework in the
context of a simple but expressive functional programming language. We
showed that the type system for this language enforces the desired security
properties, preventing improper downgrading and covert policy channels.
This work will be published later this summer. The key insight is to repre-
sent information security labels (representing poHcies) as first-class values in

the language and to analyze information flow using a dependent type system
in which types record what dynamic information can affect these labels. We
are now planning to implement this more expressive type system as part of
the Jif language.

Support for security extensions to Java To support the implementa-
tion of the various versions of Jif, we have developed an extensible compiler
framework that makes it easy to build compilers for languages similar to
Java. Reported in our paper at the 2003 Conference on Compiler Construc-
tion, this is a basic tool for supporting research in language-based security,
because it mate it easy to add a broad range of new annotations or even
statements and expressions. This framework has been used to construct
more than fifteen variants of the Java language. Like the Jif compiler, the
Polyglot framework is available for public download. It is being used for
several ongoing projects outside Cornell and continues to attract interest.

Availability Information flow analysis has been widely used to character-
ize confidentiality and integrity properties of programs; we have been ex-
ploring how to extend it to analyze and enforce availability policies as well.
Intuitively, integrity properties ensure that data will be correct if it is avail-
able, whereas availability properties ensure that data will be available but
say nothing about correctn^s. Distinguishing between these two properties
is important for obtaining an accurate security analysis, because integrity
and availability behave differently in a distributed, replicated setting. For
example, simple replication improves availability but harms integrity and
confidentiality because there are more sit^ to attack. More complex repli-
cation and voting schemes introduce a rich space of tradeoffs. We have
defined an availability analysis for a simple programming language and are
now exploring a unified framework for analyzing confidentiality, availability,
and integrity in a distributed, replicated system.

Avoiding Malicious Firmware

Boot firmware runs in privileged mode prior to the start of most security
services and before the operating system has booted, and it has up to now
been necessary to accept boot firmware as part of the trusted code base.
Unfortunately, boot firmware often includes on-board device drivers sup-
plied with the devices. These devices are mass-produced all over the world

by third-party manufacturers, who may not even be known to the end con-
sumer. Thus boot firmware is a plausible avenue for the widespread and
covert introduction of malicious code. BootSafe guards against this by stat-
ically checking on-board drivers against a built-in security policy each time
they are loaded.

The BootSafe system is based on Open Firmware, a widely used standard
for boot firmware. Sun Microsystems and Apple both use boot firmware
that conforms to this standard. Open Firmware-compliant systems include
an interpreter or virtual machine for fcode, a lightly compiled form of the
Forth programming language.

The BootSafe system enforces a three-tiered baked-in safety policy for
device drivers consisting of (i) basic type safety, memory safety, stack safety,
and control-flow safety at roughly the level provided by the Java bytecode
verifier; (ii) a device encapsulation policy that prevents device drivers from
operating other devices except where explicitly allowed by the policy (for
instance, a PCI device may communicate with the PCI bus to which it is
attached), and then only through published interfaces; and (iii) a structural
safety policy, which enforces that code supphed by vendors will interact with
Open Firmware services through the published interface.

To ensure type safety, our verifier relies on the fact that drivers are
compiled from a high level language, namely Java. The BootSafe prototype
consists of three interlinked elements: J2F, a Java VM-to-fcode compiler;
a stand-alone verifier that is trusted and part of the boot kernel; a Java
API for BootSafe-compliant Open Firmware drivers; and a runtime support
module.

Over the past year, we finished building the prototypes of these elements.
In addition, we produced working device drivers for PCI disk and PCI net
devices written in Java. These drivers can be compiled to Java bytecode
with an ordinary off-the-shelf Java compiler, then further compiled to fcode
with J2F. The resulting fcode passes verification with our verifier.

Static Analysis with Kleene Algebra

Kleene algebra with tests (KAT) is an algebraic system for program spec-
ification and verification that combines Kleene algebra, or the algebra of
regular expressions, with Boolean algebra. One can model basic program-
ming language constructs such as conditionals and while loops, verification
conditions, and partial correctness assertions. KAT has been applied suc-
cessfully in substantial verification tasks involving communication protocols.

source-to-source program transformation, concurrency control, compiler op-
timization, and dataflow analysis. The system is PSPACE-complete and
deductively complete for partial correctness over relational and trace mod-
els.

KAT has a rich algebraic theory with many natural and useful models:
language-theoretic, relational, trace-based, matrix. Because of its roots in
classical algebra and equational logic, KAT provides a mathematically rigor-
ous foundation that subsumes many previous approaches, recasting them in
a more classical algebraic framework. Hoare logic and program schematology
are two examples of major theories in computer science that are subsumed
by KAT.

We recently demonstrated that KAT provides a general framework for
the static analysis of programs and given a construction that shows how
to use KAT to statically verify compliance with safety polici^ specified by
Schneider's security automata, a popular mechanism for the specification
and enforcement of a large class of security policies. A security automaton is
an ordinary finite-state automaton in which certain stat^ are designated as
error states. A transition to a new state may occur when a critical operation
of a program is executed. Any computation of a program containing a
sequence of critical operations that sends the automaton to an error state
violates the policy as specified by the automaton.

The automaton can be used for runtime enforcement of the security pol-
icy as well as specification. The program code is instrumented to call the
automaton before all critical operations (ones that could change state of the
automaton). The automaton aborts the computation if the operation would
cause a transition to an error state. This is purely a runtime mechanism.
However, KAT be used to verify compliance with the security policy stati-
cally, before execution. The method uses the KAT rules to propagate state
information throughout the program to all critical operations. If the veri-
fication is successM, an independently checkable proof object is produced
that can be used to certify that the runtime checks are unnecessary. The
method is shown to be sound in the sense that any program verified in this
fashion satisfi^ the policy, A version of the soundness theorem with a sim-
plified verification condition holds whenever the program is known to be
total. There is also a corresponding weak completeness theorem that says
that if the propositional abstraction of the program fails to verify, then there
is a relational interpretation in which the program is unsafe.

The method has been used to verify an example device driver, and an
interactive theorem prover for KAT, written in SML, has been developed.

Publications: July 2003 - June 2004

(1) Kamal Aboul-Hosn and Dexter Kozen. KAT-ML: An Interactive The-
orem Prover for Kleene Algebra with Tests. Proc. 4ih Int. Workshop
on the Implementation of Logics (WIL'03) (Almaty, Kazakhstan, Sept.
2003), 2-12.

(2) James Cheney. The Complexity of Equivariant Unification. Proceed-
ings of the 31st International Colloquium on Automata, Languages and
Programming (ICALP 2004), (Turku, Finland, July 2004).

(3) James Cheney. Nominal Logic Programming. Ph.D. Thesis, Cornell
University (August 2004).

(4) J. Cheney and C. Urban. System Description: Alpha-Prolog, a Fresh
Approach to Logic Programming Modulo alpha-Equivalence. Proc.
17th Int. Workshop on Unification, UNIF'OS, (Valencia, Spain, June
2003), 15-19.

(5) Matthew Fluet and Daniel Wang. Implementation and Performance
Evaluation of a Safe Runtime System in Cyclone. Proceedings of the
SPACE 2004 Workshop, (Venice, Italy, January 2004).

(6) M. J. Gabbay and J. Cheney. A Proof Theory for Nominal Logic. Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science (LICS 2004), (Turku, Finland, July 2004), 139-148.

(7) Dexter Kozen. Automata on Guarded Strings and Applications. Matematica
Contempordnea 24 (2003), 117-139.

(8) Dexter Kozen. Computational Inductive Definability. Annals of Pure
and Applied Logic 126, 1-3 (April 2004), 139-148.

(9) Dexter Kozen. Some Results in Dynamic Model Theory. Science of
Computer Programming 51, 1-2 (May 2004), 3-22.

(10) Dexter Kozen and Jerzy Tiuryn. Substructural Logic and Partial Cor-
rectness. Trans. Computational Logic 4, 3 (July 2003), 355-378.

(11) Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing
Robust Declassification. IEEE Computer Security Foundations Work-
shop (Pacific Grove, CA, June 2004), 172-186.

^

(12) FVed B. Schneider. Least Privilege and More. IEEE Security and
Privacy 1, 3 (September/October 2003), 55-59.

(13) Ered B. Schneider Lifting reference monitors from the kerneL Formal
Aspects of Security, FASec 8002 (London, United Kingdom, Decem-
ber 2002), Ali E, Abdullah, Peter Ryan, and Steve Schneider (eds.).
Lecture Notes in Computer Science, Volume 2629, Springer-Verlag,
New York, 2003, 1-2.

DoD Interactions and Technology Transitions

• As a consultant to DARPA/IPTO, Schneider chairs the independent
evaluation team for the OASIS Dem/Val prototype project. This
project funds two consortia to design a battlespace information sys-
tem intended to tolerate a class A Red Team attack for 12 hours.
Schneider also serves on the independent evaluation team for the new
DARPA/IPTO Self-Regenerative Systems program.

• Schneider serves on the NRC CSTB committee on improving cyberse-
curity research. This is a 2-year congressionally mandated study,

• Schneider served on the APRL search committee for Senior Scientist
in Information Assurance Technolo^.

• Morrisett and Schneider each briefed the Infosec Research Council's
"Research Hard Problems" study; Schneider also served as a reviewer
for the final resport.

• Myers, Kozen, and Schneider each participated in an advanced com-
puter science lecture series at AFRL/Rx)me.

• Further public releases of Myers' Jif compiler have been made available
at the Jif web site, http://www,cs.cornell.edu/jif. The Jif language
extends the Java programming language with support for information
flow control. The Jif compiler is implemented on top of the Polyglot ex-
tensible compiler framework for Java. The Polyglot framework has also
been released publicly at http://www.cs.cornell.edu/projects/polyglot,
and researchers at Princeton University are using this framework in
their own research. The releases of both Jif and Polyglot are provided
as Java source code and work on Unix and Windows platforms.

10

• AT&T research is working with us to develop the Cyclone language,
compiler, and tools. The source code for the compiler and tools are
freely available and may be downloaded from the web. In addition,
researchers at the University of Maryland, the University of Utah,
Princeton, and the University of Pennsylvania, and Cornell are all
using Cyclone to develop research prototypes.

• Public releases of Kozen's KAT interactive theorem prover have been
made available at the project website http://www5.cs.cornell.edu/kamal/kat/
for Mac OS X, Linux, Solaris, and Windows platforms.

11

